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AN ANALYTICAL REAL OPTION REPLACEMENT MODEL 
WITH DEPRECIATION 
 
Abstract 
A replacement model is presented for a productive asset subject to stochastic input decay, tax 
allowances due to a deterministic depreciation variable, and a fixed investment cost. The risk 
neutral valuation function is formulated and optimal trigger levels signalling replacement for the 
two factors is determined analytically although not as a closed-form solution. We demonstrate 
that the operating cost trigger level depends on asset age and increases monotonically due to 
positive volatility changes and that the model solution furnishes the results for certain special 
cases. The analysis is conducted both for a depreciation schedule specified by the declining 
balance and straight line method. The comparative analysis shows that although no universal 
ideal depreciation schedule exists between the two, the declining balance method is preferred. 
Finally, the solution method is sufficiently tractable to be applied in principle to real option 
models where time is a critical factor. 
 
 
1. Introduction 

 

The replacement policy for productive assets is normally governed by the degree of their 

quality degradation, which is manifested through the stream of possible tax credits 

attributable to the depreciation schedule in use as well as the operating cash flows that the 

asset under study generates. For productive assets, especially those belonging to long-

lived expensive projects, these depreciation tax allowances distributed over the asset’s 

lifetime can represent significant positive cash flows, which can crucially influence the 

decision of whether to continue with or to replace the incumbent. By formulating these 

allowances within a real option model under input decay, an analytical expression for the 

optimal replacement policy is developed from the risk neutral valuation relationship so 

that the extent of their significance can be evaluated. 

 

This paper examines the replacement policy for an incumbent productive asset when the 

stochastic operating cost is described by geometric Brownian motion, tax allowances due 

to a deterministic depreciation variable are available and when the replacement 

investment cost is fixed. The after tax risk neutral valuation relationship for the asset 

value including the embedded replacement option is formulated and analytically 

determined. The optimal replacement policy is then derived from the economic boundary 

conditions that yield a set of simultaneous equations from which the optimal trigger 



3 

levels for the two focal variables are evaluated. Analysis on the stochastic replacement 

model establishes that solutions to the special cases of an absent depreciation variable 

and a zero underlying volatility can be derived from the general result. Numerical 

analysis on the solution reveals real option model paradigm that the trigger level for the 

stochastic variable and the value relationship are both increasing functions of the 

underlying volatility. Since the stochastic model is constructed on two alternative 

depreciation schedules, declining balance and the straight line method, a comparison is 

conducted on the distinct effect of each schedule on the replacement policy to reveal that 

although no depreciation schedule is universally ideal, the declining balance method is 

preferred. 

 

Fundamentally, the applications of real options methods to a decision making context in 

the presence of uncertainty are founded on the valuation of perpetual American options 

under risk neutrality, Samuelson (1965), and the deduction that traditional capital 

budgeting techniques misprice the option value, Myers & Turnball (1976). Amongst the 

original contributors to real option applications include Tourinho (1979) who values oil 

shale reserves and determined the oil price trigger level signalling exploitation, 

McDonald & Siegel (1985) who investigate the abandonment option, McDonald & Siegel 

(1986) who demonstrate that the optimal investment policy is often to defer in the 

presence of uncertainty, and Brennan & Schwartz (1985) who from deriving the optimal 

conditions governing the temporary suspensions of operations and their re-enactment, 

then proceed to demonstrate the effect of hysteresis.  

 

The first investigations of stochastic replacement models are conducted using a dynamic 

programming formulation, Bellman (1955), Rust (1987). Subsequent formulations seek to 

identify the optimal replacement conditions when the asset degradation is described 

entirely by input decay by ignoring output decay, Feldstein & Rothschild (1974), and the 

operating cost uncertainty is well described by a known stochastic process. Ye (1990) 

who treats the behaviour of the operating cost to be arithmetic Brownian motion, 

demonstrates that the effect of uncertainty is to defer the replacement decision. Similar 

results are obtained by models grounded on geometric Brownian motion. Mauer & Ott 
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(1995) devise a sophisticated formulation that is constructed on the after tax risk neutral 

valuation for a replacement model involving the variations in operating cost, depreciation 

and salvage price. An additional model is presented by Dobbs (2004). Other real options 

models related to the productive asset replacement context include Malchow-Møller & 

Thorsen (2005) on technology replacement, see also Malchow-Møller & Thorsen (2006) 

and Williams (1997) on real asset redevelopment. 

 

The present model extends the analytical scope of these real option replacement 

representations by introducing the depreciation schedule as a distinct variable into the 

formulation based on input decay. The introduction is completed through expressing 

depreciation as a deterministic time dependent variable. This entails modelling the 

depreciation variable as geometric Brownian motion with zero underlying volatility for 

depreciation computed using the declining balance method and as arithmetic Brownian 

motion with zero underlying volatility when using the straight line method. The 

incorporation of the additional variable into the formulation means that the valuation 

function for the asset including its embedded replacement option depends on two distinct 

factors and that the search for the optimal trigger levels for those two factors requires the 

analytical solution to a two-dimensional valuation relationship.  

 

Previous multifactor real option models have adopted one of three methods for deriving 

their results. The first approach pivots on the valuation function possessing the property 

of homogeneity of degree one. Effectively, this approach treats the phenomenon under 

study as an exchange option, Margrabe (1978) and Sick (1989), and uses a ratio 

transformation to reduce the model dimensionality from two to one from which a closed-

form solution is generated. Illustrations of this approach include McDonald & Siegel 

(1986), Williams (1991) and Malchow-Møller & Thorsen (2005). However, since the 

replacement investment cost is fixed, this approach is not tenable, Adkins & Paxson 

(2006). The second approach, proposed by Mauer & Ott (1995), conjectures that the 

depreciation and salvage price variables can be reliably expressed as functions of the 

operating cost. These substitutions entail the significant compromise that a deterministic 

depreciation variable can be satisfactorily represented by a stochastic factor and that 
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salvage value is only determined by the operating cost. The third approach employs 

numerical finite difference methods to solve the multi-factor valuation relationship. 

Although this approach makes no compromising simplifying assumptions, it does possess 

disadvantages to the method used in the present formulation. Principally, from the 

method adopted here, we establish analytically the results for special cases from the 

general solution. Further, it is possible in principle to derive analytical expressions for 

various key indicators such as vega. 

 

The outstanding reason for adopting the analytical procedure canvassed in this paper is 

that its scope of analysis goes beyond the confines of the replacement phenomenon under 

study. Since the valuation function depends on two factors, the solution method is 

applicable to other two factor models for which the property of homogeneity of degree 

one cannot be invoked for sound logical reasons. Secondly, the introduction of a time 

dependent variable into the formulation and the analytical derivation of the resulting 

valuation relationship mean that real option formulations involving a time dependent 

variable should in principle be amenable to analysis and yield a quasi-analytical solution. 

Potentially, this paves the way for developing and solving real option models in which 

time is a critical factor such as the replacement of assets which have a finite life. 

 

This paper is organised in the following way. In section 2, we formulate and develop the 

analytical solution to the stochastic replacement real option model for an asset whose 

depreciation follows a declining balance process. By modifying the parametric values, it 

is demonstrated that expressions for the optimal trigger level for the operating cost is 

derivable from this general model. In the following section, we conduct a variety of 

simulation experiments to reveal the behaviour of the solution and to supply a greater 

insight into the nature of the model. Section 4 re-examines the stochastic replacement real 

option model for a straight line depreciation charge and an investigation of its sensitivity 

to parametric changes is performed in the following section. A comparison of the model 

results under the declining balance and straight line method is discussed in section 6. The 

conclusion in section 7 brings the paper to a close. The deterministic replacement model 
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for the two variant forms of depreciation represents a benchmark for assessing the model 

results and this analysis is relegated to Appendix A.  

 

2. Replacement Opportunity with Declining Depreciation 

 

Consider a capital asset deployed in a productive process, which has a significant bearing 

on business performance. This asset suffers degradation in quality due to usage and its 

degree of deterioration is reflected through increases in its operating cost. As the 

operating costs for this asset become increasingly more inferior relative to those of a 

newly installed replica, a decision has to be reached on whether to continue with the 

incumbent asset or to replace it with a replica having a superior operating performance. 

Under uncertainty, the solution for the asset replacement model is determined from 

optimising the expected present value of the after tax uncertain stream of net cash flows 

attributable to the asset for all possible replacement policies. The solution for the model 

with a single stochastic variable is characterised by an upper critical limit, beyond which 

replacement is the prescribed policy. Introducing a depreciation charge into the model, 

even though it is a deterministic variable, alters the critical limit from a single point level 

to a two-dimensional discriminatory boundary.  The optimal policy for the replacement 

model involving a stochastic operating cost variable and a deterministic depreciation 

charge variable is jointly settled by their prevailing values. The discriminatory boundary, 

which separates the region of continuance from replacement, is evaluated by comparing 

the expected present value for the incumbent asset with that for a replica with its 

improved performance less the fixed investment cost incurred from obtaining the 

improvement net of any residual depreciation tax shield. 

 

For some point of time, the operating cost for the asset under consideration is denoted by 

the time dependent stochastic variable C . The notation we use in the stochastic 

replacement model ignores the time subscript since its omission leads to no confusion. In 

their real options analysis of capital replacement, Mauer & Ott (1995) and Dobbs (2004) 

assume that the stochastic cost behaviour is adequately represented by a geometric 
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Brownian motion process with positive drift. Similarly, we will adopt the same process 

by specifying the before tax operating cost as: 

 C C CdC Cdt Cdz= α +σ , (1) 

where αC  is its instantaneous drift rate, σC  is the instantaneous volatility rate, and Cdz  is 

the increment of a standard Wiener process. The operating cost is a measure of input 

decay and since the asset deteriorates with age, αC  is expected to be positive.  

 

Since the capital allowances attributed to the asset under consideration acts as a tax 

shield, this factor influences the replacement decision and plays a role in determining the 

discriminatory boundary. The capital allowance is represented by the depreciation charge 

D , which is calculated on the basis of a declining balance and is described by a 

deterministic geometric process: 

 DdD Ddt= −α , (2) 

where αD  is the constant proportional depreciation rate. Since the depreciation charge is 

described deterministically by a time dependent variable then from knowing the 

depreciation charge at the time of replacement, the prevailing depreciation charge level 

determines the time elapsed since the last replacement. 

 

The degradation the asset suffers is assumed to be due to input decay and impairments in 

performance arising from usage are manifested in its operating cost. Output decay is 

treated as not relevant for the model context and the revenues generated by the asset 

under consideration remain at the constant level 0P . At the replacement event, replacing 

the incumbent by a replica asset incurs a fixed known investment cost, which is denoted 

by K . The replacement investment is considered to be irreversible and the asset owner is 

unable to recoup any of the capital outlay on its discharge. Any salvageable value 

available on discharge is assumed to be constant and is absorbed by the replacement 

investment cost. If the replacement investment cost carries any instantaneous tax credits, 

these are fully absorbed by K .  When the incumbent is replaced by a superior replica 

asset, the operating cost is restored to the superior original level 0C  and the depreciation 

charge level becomes 0D . If the investment cost is fully depreciable for tax purposes, 0D  
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and K  are related by 0D K= θ . Although this adjustment can be accommodated in the 

initial formulation, we leave it open since it is straightforward to make the refinement by 

modifying the model solution. 

 

The possession of an operating asset conveys to its owner a portfolio of options including 

the option to replace. Although other operating opportunities such as changes in scale or 

temporary suspension may be available, we assume that the replacement decision for the 

asset under consideration is made in isolation to any other enacted policies and that these 

other flexibilities are absent. We introduce the valuation function F , which is defined as 

the value of the incumbent asset including its embedded replacement option. This 

valuation function depends on the critical variables that influence the replacement policy. 

These are the operating cost for the incumbent asset and its depreciation charge, and 

( )F F C,D= . The value of the asset in use is determined in part by its attributed after tax 

cash flows: 

 ( ) ( )1− − τ + τP C D . 

where τ  denotes the relevant corporate tax rate. By assuming complete markets, standard 

contingent claims analysis can be applied to the asset with value F  to determine its risk 

neutral valuation relationship as a partial differential equation (the derivation is presented 

in Appendix B), Constantinides (1978), Mason & Merton (1985). The valuation 

relationship is: 

 ( )( )
2

2 21
C C D2 2

F F Fσ C θ C θ D P C 1 τ Dτ rF 0
C C D
∂ ∂ ∂

+ − + − − + − =
∂ ∂ ∂

, (3) 

where r  denotes the risk-free rate of interest, Cθ  the risk-adjusted drift rate for the 

operating cost and D Dθ = α . An alternative derivation for (3) relies on using an arbitrage 

argument, Shimko (1992), in which case r = µ  and C Cθ = α . 

   

The nature of F  can be partly resolved by examining its behaviour as the variables 

approach their limiting values. Ignoring higher derivatives greater than one, the particular 

solution PF  to (3) is: 
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 ( ) ( )0
P

C D

P 1 τ C 1 τ DτF
r r θ r θ
− −

= − +
− +

. 

F , which has to be non-negative otherwise there would be no initial asset investment, is 

conceived as the combination of the incumbent asset value VF  and the replacement 

option RF , with V RF F F= + . Since the option value is always non-negative, then VF F≥ , 

Trigeorgis (1996). Assuming an infinite lifetime: 

 ( ) ( ) ( )0
V P

C D

P 1 τ C 1 τ DτF t F
r r θ r θ
− −

→ ∞ = − + =
− +

. 

When the operating costs for the incumbent asset become increasingly adverse and 

approach infinity, there would normally exist a cogent economic justification for 

replacing the incumbent. For C →∞ , the asset value becomes negative and is dominated 

by the replacement option value which tends to infinity. In contrast, when the operating 

costs become increasingly favourable and approach zero, no economic justification exists 

for replacing the incumbent. For C 0→ , the asset value is strongly positive but the 

replacement option value is close to zero. We now consider the effect of the limiting 

values for the depreciation charge on the replacement option. Seemingly, we may wish to 

contend that old assets are probably inefficient and ready for replacement, and so the 

replacement option value is greatest when the depreciation charge tends to zero. 

However, that is not the case because of the effect of the residual depreciation charge on 

the replacement investment cost. Since the prevailing depreciation charge directly and 

positively influences the residual depreciation tax shield, which in turn lowers the 

replacement investment cost, the prevailing depreciation charge exerts its greatest 

pressure on reducing the replacement investment cost when its value is at its maximum 

level. This effect is palpable from the value matching relationship (8) since any reduction 

in the replacement investment cost caused by the residual depreciation shield 
D

Dτ
θ

 is 

always greater than the present value of the depreciation tax shield in the limit 
D

D
r
τ
+ θ

. 

The option value for replacing the incumbent is positively influenced by the prevailing 

depreciation charge and it attains its greatest value when the depreciation charge at its 
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maximum and its lowest value when it is at its minimum. Collectively, we can describe 

these limiting boundary conditions by: 

 ( ) ( ) ( ) ( )R R R RF C 0,D 0,F C ,D ,F C,D 0 0,F C,D→ → →∞ →∞ → → →∞ →∞ . (4) 

 

The simplest kind of function satisfying (3) takes the generic form: 

 
( ) ( )0 1 1β η − τ − τ τ

= + − +
− θ + θC D

P C D
F AD C

r r r
, (5) 

where A  denotes a generic coefficient whose value is to be determined. This generic 

form can be justified in two ways. Ignoring the after tax cash flow element, (3) is similar 

to the valuation relationship formulated by McDonald & Siegel (1986) in their analysis of 

an investment option. They express the valuation function as the solution to a two-

variable partial differential equation as a product power function. Although the partial 

differential valuation relationships for the two models are not identical, (3) and theirs are 

exactly the same when the variance of one variable is set to equal zero, so the solution to 

their relationship with a zero variance for the relevant variable is the solution to (5). 

McDonald & Siegel (1986) require that the product power function exhibits homogeneity 

of degree one. We do not impose this condition on (5) and the sum of the parameters 

β + η  is permitted to be free. Second, (5) is the solution to (3) for the following 

characteristic equation: 

 ( ) ( )21
2 1 0β η = σ η η − + θ η − θ β − =C C DQ , r . (6) 

This is the bivariate equivalent to the characteristic equation formulated for a single 

variable model, Dixit & Pindyck (1994). Unlike the single variable case, additional 

information required before the solution values for β  and η  can be determined. The 

solutions for β  and η  are found from the boundary conditions. Their values are 

identified by the point of intersection for the function Q  and the function distilled from 

the value matching relationship and associated smooth pasting condition. Since the 

function Q  specifies a parabola that exerts a presence in all four quadrants, the solution 

values for β  and η  may possibly belong to any of the four quadrants, that is: 
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{ }
{ }
{ }
{ }

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

I : β ,η β 0,η 0;

II : β ,η β 0,η 0;

III : β ,η β 0,η 0;

IV : β ,η β 0,η 0.

≥ ≥

≥ ≤

≤ ≥

≤ ≤

 

This suggests that the specific form of (5) is: 

 
( ) ( )

i i

4
0β η

i
i 1 C D

P 1 τ C 1 τ DτF A D C
r r θ r θ=

− −
= + − +

− +∑ . 

By invoking the limiting boundary conditions (4), 2 3 4A A A 0= = =  and the specific 

valuation function simplifies to: 

 
( ) ( )

1 1 0
1

C D

P 1 C 1 DF A D C
r r r

β η − τ − τ τ
= + − +

−θ + θ
. (7) 

 

The switch between assets occurs when the value of the incumbent asset attains the value 

of the replica less the net replacement investment cost, where the value is determined 

from the combined expected after tax net cash flow and the value of the replacement 

opportunity and is specified by (7). At the replacement event, the model variables C  and 

D  simultaneously achieve their respective trigger levels Ĉ  and D̂ . Unlike the single 

variable real option models where the trigger level is represented by a single point, the 

composite trigger level for the two variable model under consideration is described by an 

uncountable set of paired trigger levels { }ˆ ˆC,D . There exists for this two variable model 

any number of distinct trigger level possibilities because of the trade-off that exists 

between the operating cost and depreciation trigger levels. If replacement is economically 

viable for a specific pair of trigger levels, a small change in one trigger level 

accommodated by a commensurate change in the other also satisfies the condition 

conducive to optimal replacement. The uncountable set of paired trigger levels is 

represented by the function G  with ( )ˆ ˆG C, D 0= . 

 

At the replacement event, the difference in the values for the incumbent and replica assets 

has to equal the net replacement investment cost. The depreciation for the incumbent 
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asset at replacement is D̂  and its residual depreciation defined as the accumulation over 

its remaining life is θDD̂ / . By assuming that the whole residual depreciation is 

allowable against tax, the residual depreciation tax credit is τ θDD̂ /  and the net 

replacement investment cost is − τ θD
ˆK D / . Similar to Mauer & Ott (1995) and Dobbs 

(2004), the economic condition signaling replacement is: 

 ( ) ( )0 0= − + τ θD
ˆ ˆ ˆF C,D F C ,D K D /  

which can be expressed as: 

 
( ) ( )

1 1 1 1 0 0
1 1 0 0

C D C D D

ˆ ˆ ˆC 1 C 1 DD DˆˆA D C A D C K
r r r r

β η β η− τ − τ ττ τ
− + = − + − +

−θ + θ −θ + θ θ
. (8) 

 

Associated with the value matching relationship (8) are two smooth pasting conditions 

with respect to C  and D . From these, we establish that: 

 
( )
( ) ( )

1 1
1

1 C 1 D D

ˆ ˆ1 C rDˆˆA D C 0
r r

β η − τ τ
= = ≥
η −θ β θ + θ

 (9) 

Since the option value is non-negative, 1A 0≥ , which corroborates that both 1β  and 1η  

are non-negative. By using (9), we eliminate 1A  from (8) to yield: 

 
( )
( )

( )
( ) ( )

1 1
00 0 0

1 1
1 C C D

Ĉ 1 C 1D C D1 Kˆ ˆr r rD C

β η⎛ ⎞− τ − τ τ⎛ ⎞ ⎛ ⎞η +β − + = − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟η −θ −θ + θ⎝ ⎠ ⎝ ⎠⎝ ⎠
. (10) 

Since both sides of (8) have the same sign, 1 1 1β +η > . 

 

The reduced forms of the value matching relationship and smooth pasting condition, (10) 

and (9) respectively, and the characteristic equation (6) collectively constitute the model 

for the value of an active productive process that embodies a replacement option to 

exchange the incumbent asset with a replica. These three equations are sufficient to 

determine the discriminatory boundary separating the continuance from the replacement 

region. Although this model comprises four unknowns in total, Ĉ , D̂ ,  1β  and 1η ,  the 

requirement for model determinacy is satisfied since the construction of the 

discriminatory boundary requires one of the variables to have a pre-specified value and 
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the function ( )ˆ ˆG C, D 0=  makes up the missing equation. No closed-form analytical 

solution exists for the general model and we have to resort to determining the model 

solution by solving numerically the set of simultaneous equations. In the next section, we 

present the simulation analysis and discuss the results that it generates. 

 

An alternative interpretation of the reduced form value matching relationship is from 

recognising that depreciation is only a time dependent variable. From (2) DT̂
0D̂ D e−θ=  

where T̂  denotes the elapsed time between replacements. This means that the value 

matching relationship can be cast in terms of the optimal elapsed time. By replacing D̂  

by T̂  and eliminating Ĉ , (10) becomes: 

 
( ) ( ) ( )

( ) ( )
D

1 D 1

T̂
ˆ 0T0 0

1 1 V
1 D D C D

C 1rD e D1 e C K
r r r

−θ
β θ η − ττ τ

η +β − + = − +
β θ + θ −θ + θ

, (11) 

where: 

 
( ) ( )

( )D

0 1 D D
V T̂

1 C0

1 C r
C

r rD e−θ

− τ β θ + θ
=

η −θτ
. 

 

The revised value matching relationship (11) and the characteristic equation (6) now form 

the replacement model and by setting T̂  to equal a pre-specified value, solutions to the 

unknown parameters 1β  and 1η  can be determined from these two simultaneous 

equations. From these values, Ĉ  can be found from (9). This means that the operating 

cost trigger level is time dependent and the optimal replacement policy depends on the 

age of the incumbent asset. Older assets are retired and replaced by a replica at a different 

operating cost trigger level than younger assets and asset usage plays a significant role in 

governing the replacement policy. 

 

By formulating the evolution of both the operating cost and depreciation, the stochastic 

replacement model adopts a general form from which certain special cases can be 

derived. The deterministic replacement model emerges when the volatility of the 

operating cost is set to equal zero. In Appendix C, we establish that when the stochastic 
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model is constructed from applying an arbitrage approach grounded on dynamic 

programming, the stochastic formulation for a zero operating cost volatility simplifies to 

yield the solution to the deterministic replacement model. Second, the model presented 

by Dobbs (2004) that excludes the depreciation variable from the formulation is a special 

case of the general replacement model when adjustments are made to the depreciation 

variable. The omission of the depreciation variable from the general replacement model 

implies that Dθ  is set to equal zero and the variable D  is excluded from the valuation 

relationship, so 1 0β = . It follows that (10) simplifies to the solution supplied by Dobbs 

(2004): 

 
( )
( )

( )
( )

1
00

1
1 C C

Ĉ 1 C 1C1 Kˆr rC

η⎛ ⎞− τ − τ⎛ ⎞η − + = +⎜ ⎟⎜ ⎟⎜ ⎟η −θ −θ⎝ ⎠⎝ ⎠
, (12) 

with: 

 
2

C C1 1
1 2 22 2 2

C C C

2r⎛ ⎞ ⎛ ⎞θ θ
η = − + − +⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠

. 

A similar form to (12) is generated by modifying the definition of the residual 

depreciation tax credit. By treating the residual depreciation as the discounted 

depreciation accumulated over its remaining lifetime, the residual depreciation equals 

( )D / µ+θ  and its tax credit becomes ( )D /τ µ + θ . When this value is substituted in (8), 

the depreciation trigger level D̂  appears in the resulting value matching relationship only 

through the option element and consequently, its exponent 1β  is zero. The solution to the 

replacement model that has a residual depreciation specified by discounting is: 

 
( )
( )

( )
( )

1
00 0

1
1 C C D

Ĉ 1 C 1C D1 Kˆr r rC

η⎛ ⎞− τ − τ τ⎛ ⎞η − + = − +⎜ ⎟⎜ ⎟⎜ ⎟η −θ −θ + θ⎝ ⎠⎝ ⎠
, (13) 

with 1η  defined as above. 

 

Although no closed-form solution exists for the three replacement model variants, it is 

possible to discern the comparative extent of the solutions they produce. Under the Dobbs 

(2004) model as specified by (12), there is no residual depreciation tax credit to reduce 

the replacement investment cost and its operating cost trigger level is the greatest of the 
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three since the productive asset has to operate the longest to render sufficient 

compensation to balance the greatest investment cost. When the residual depreciation is 

measured by its present value, the residual depreciation tax credit reduces the 

replacement investment cost and consequently, the operating cost trigger level for this 

model as specified by (13) is less than the level supplied by the Dobbs (2004) model. 

Finally, the residual depreciation tax credit attains its greatest value for the residual 

depreciation that is measured by its accumulation over its remaining potential life. This 

measure consequently reduces the effective investment cost by the greatest amount and 

the operating cost trigger level for this model as indicated its value matching relationship 

(10) is the least amongst the three variants.  

  

3. Simulation Results for Declining Balance Model 

 

Further insights into the nature of the replacement model founded on the stochastic 

operating cost and deterministic depreciation variable is leveraged through numerical 

simulations and sensitivity analysis. Because no closed-form solution exists for the model 

variants, a comparative evaluation of their properties and the identification of any 

shortcomings is only achievable through the use of numerical techniques. Our primary 

aim is to compare the trigger levels yielded by the models proposed by Mauer & Ott 

(1995) and Dobbs (2004) relative to those produced by the present formulation. We then 

proceed to penetrate the behaviour of the present formulation by examining the way the 

solution changes due to variations in key variables. The numerical analysis is conducted 

using the base case data that is exhibited in Table 1. This ignores the value for the 

constant revenue level 0P  since it is not included in the solutions. In the base case, the 

initial depreciation level 0D  for a replica is purposely set to equal the replacement 

investment cost K  adjusted by the declining balance rate Dθ  with 0 DD θ K=  so that 

variations in these factors naturally percolate through into the computed trigger levels. 
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Table 1 
Base Case Data 

 
Replacement investment cost K  100
Initial operating cost for a replica 0C 10
Risk neutral operating cost drift rate Cθ  4%
Operating cost volatility Cσ 25%
Initial depreciation charge 0D 10
Depreciation declining balance rate Dθ 10%
Risk-free interest rate r  7%
Relevant corporate tax rate τ  30%

 

The discriminatory boundaries as mapped out by the respective trigger level for the 

models proposed by Mauer & Ott (1995) and Dobbs (2004) and for the present 

formulation are collectively presented in Figure 1. This reveals that the discriminatory 

boundary for the present formulation, which is represented by the line AB, is a declining 

relationship between the respective trigger levels. The operating cost trigger level is at its 

lowest value when the replica is just installed for D̂ 10= . As the depreciation trigger 

level decreases and the incumbent asset grows old, the operating cost trigger level 

increases until it attains its maximum for D̂ 0=  when its age reaches infinity. The 

discriminatory boundary AB distinguishes the regions of continuance and replacement. 

The appropriate policy is to replace the incumbent when its prevailing operating cost and 

depreciation values are located above the line AB or to continue operations with the 

incumbent when otherwise. 

 

The discriminatory boundaries for the Mauer & Ott (1995) and Dobbs (2004) models are 

represented by horizontal straight lines since depreciation is respectively related to the 

cost trigger level or it is ignored. For both models, the replacement region lies above its 

discriminatory boundary. We know from section 2 that the discriminatory boundary for 

the Dobbs (2004) model has to be situated above that for the present formulation. The 

location of the Mauer & Ott (1995) discriminatory boundary relative to that for the 

present formulation is obscured since it depends on the base case values. Changes in the 

base case values may sufficiently lower the Mauer & Ott (1995) discriminatory boundary 
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to enable it to intersect the line AB. Notwithstanding, the model proposed by Mauer & 

Ott (1995) is founded on the compromise that the deterministic depreciation variable can 

be reliably represented by a function of the stochastic operating cost variable. This model 

produces a discriminatory boundary that is horizontal instead of one characterised by a 

declining relationship and this difference is likely to be more pronounced for younger 

rather than older assets. 

 

The profiles of 1β  and 1η  due to variations in the depreciation trigger level for the two 

variable replacement model are presented in Figure 2. This figure reveals that the values 

of both these parameters are not fixed, unlike the case for an effectively single variable 

real option model, but change with the value of the depreciation trigger level. Over the 

relevant range, the sum of the two parameters always exceeds one. They are increasing 

functions of D̂ , and attain their maximum levels at D̂ 10=  for a just installed asset and 

their minimum levels at D̂ 0=  for an infinitely aged asset. When the asset age is infinite, 

1β 0=  and 1η  takes on the value prescribed by the replacement model for a residual 

depreciation evaluated according to its present value, (13).  

 

4. Replacement Opportunity with Straight Line Depreciation 

 

Since the developments of the stochastic replacement models for depreciation measured 

according to the declining balance and straight line methods follow an identical structure, 

we present in this section only those aspects of the analysis that are dissimilar. The 

method for solving the straight line depreciation replacement model involves maximizing 

the expected present value of their after tax net cash flows for all possible replacement 

policies. The valuation relationship is based on risk neutrality, see Appendix B. The 

solutions are described by a discriminatory boundary that separates the continuance and 

replacement regions and which is found from comparing the net expected present values 

for the incumbent asset and the replica. The fundamental difference between the two 

models lies in the specification of the depreciation, and this has consequences for the 

analysis. The remaining variables maintain their definitions from section 2. 
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The quality degradation for the asset under consideration is due to input decay and is 

manifested by an operating cost evolution described by (1). Unlike declining balance 

depreciation whose value does not reach zero in a finite time, straight line depreciation 

introduces a complication into the formulation because of its asymmetric behaviour due 

to its depletion within a finite time. When the depreciation balance is exhausted, the 

depreciation level falls to zero and remains at zero until the asset is replaced. On the 

installation of the replica, its cumulative depreciation CD  over a notional lifetime N  is 

allocated evenly over its lifetime with periodic charges N CD D / N= . The remaining 

cumulative depreciation charge for the asset with elapsed lifetime t  is tX  so 0 CX D=  

and t NX 0≥ = . Straight line depreciation entails that the remaining cumulative 

depreciation charge declines at the constant absolute rate ND  for t N≤ : 

 NdX D dt= − . (14) 

 

The value for the incumbent asset including its replacement option for straight line 

depreciation is denoted by 2F , which depends on the operating costs C  and the 

remaining cumulative depreciation for X 0≥  or t N≤ , and from there on by only its 

operating cost: 

 
( )
( )

21
2

22

F C, X for X 0,
F

F C for X 0.

⎧ >⎪= ⎨
=⎪⎩

 (15) 

When a zero cumulative depreciation charge is attained, the asset shares identical values 

under the two regimes with ( ) ( )21 22F C, 0 F C= . Identification of the optimal replacement 

policy for any time t  requires that we first examine 22F  and then progress to consider 21F  

since its derivation depends on 22F .  

 

For t N≥  when the remaining cumulative depreciation is zero, the straight line 

depreciation replacement model reduces to the original model in the absence of 

depreciation and reverts to the formulation as proposed by Dobbs (2004). This means that 

the valuation function 22F  for the model with straight line depreciation is: 
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( ) ( )

1 0
22 2

C

P 1 C 1
F B C

r r
η − τ − τ

= + −
−θ

. 

and its discriminatory boundary is specified by Ĉ  in (12). 

 

For t N<  when the remaining cumulative depreciation is positive, the risk neutral 

valuation relationship for 21F  is: 

 ( )( )
2

2 2 21 21 211
C C N 21 0 N2 2

F F Fσ C θ C D rF P C 1 τ τD 0
C C X

∂ ∂ ∂
+ − − + − − + =

∂ ∂ ∂
. (16) 

The solution to (16) is identified by splitting the partial differential equation into its 

homogenous element that reflects the replacement option value and the particular element 

that governs the long run asset value. The homogenous element is: 

 
2

2 2 21 21 211
C C N 212 2

F F Fσ C θ C D rF 0
C C X

∂ ∂ ∂
+ − − =

∂ ∂ ∂
, 

whose generic solution takes the form: 

 ψ λX
21 1F B C e= . 

As before, we adopt a product function as the solution to the homogenous element except 

that one of its components is specified by λXe  since the partial differential term with 

respect to X  does not involve X  as a coefficient. Single variable real option models 

grounded on arithmetic Brownian motion are discussed by Shimko (1992). By 

substituting the solution in the homogenous element, we demonstrate that the 

homogenous element is satisfied with characteristic equation: 

 ( ) ( )21
2 C C N2Q ψ,λ σ ψ ψ 1 θ ψ D λ r 0= − + − − = . (17) 

By adopting a similar argument as described in section 2 that explains the signs of the 

exponents, we conclude that both ψ  and λ  are non-negative. It follows that: 

 1 1ψ λ X
21 11F B C e= . (18) 

 

The particular element of (16) is: 

 ( )( )21 21
C N 21 0 N

F Fθ C D rF P C 1 τ τD 0
C X

∂ ∂
− − + − − + =

∂ ∂
, (19) 

whose solution is: 
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( ) ( )0 bXN

21
C

P 1 τ C 1 τ D τF ae
r r θ r
− −

= − + +
−

 

The unknown parameter b  is found by substituting 21F  in (19) to reveal that Nb r / D= − . 

The complete solution to (16) is derived by stitching together the homogenous (18) and 

particular elements to yield: 

 
( ) ( )

N1 1 0 rX / Dψ λ X N
21 11

C

P 1 τ C 1 τ D τF B C e ae
r r θ r

−− −
= + − + +

−
 

When the remaining cumulative depreciation charge is zero, ( ) ( )21 22F C, 0 F C= . This 

implies that Na τD / r= −  Also when X 0= , 11 2B B= , 1 1ψ η=  and 1λ 0= . It follows that:  

 
( ) ( ) ( )N

1 1

rX / D
N0ψ λ X

21 11
C

D τ 1 eP 1 τ C 1 τ
F B C e

r r θ r

−−− −
= + − +

−
. (20) 

The quantity N

rX
D1 e

−

−  is interpreted as a finite lifetime adjustment term, which equals 

zero for NX D=  where NX / D  denotes the fraction of the remaining time before the 

depreciation is fully depleted. Note that ( )NrX / D
ND τ 1 e / r−−  represents the annuity 

discounted at the risk-free rate r  with a lifetime NX / D . The fundamental distinction 

between the two replacement models is that the straight line variant has a finite lifetime 

adjustment term to account for the eventual depletion of depreciation and the form of the 

product function.  

 

For X̂ 0> , the remaining cumulative depreciation is positive. At the replacement event, 

the difference between the values for the replica and the incumbent asset has to equal the 

net replacement investment cost, where the value is determined collectively from the net 

benefits. Since the remaining cumulative depreciation is denoted by X̂  at the 

replacement event and assuming that the whole amount is allowable for tax purposes, the 

residual depreciation tax credit for the straight line method is ˆτX  and the net replacement 

investment cost becomes ˆK τX− .  The value matching relationship given by 

( ) ( )21 21 0 0
ˆ ˆ ˆF C,X F C ,X X K= + τ −  is expressed as: 
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( ) ( )

( ) ( )

N

1 1

1 01

ˆrX / D
Nˆψ λ X

11
C

rN
Nλ X 0ψ

11 0
C

ˆ D τ 1 eC 1 τˆB C e
r θ r

D τ 1 eC 1 τ ˆB C e K τX.
r θ r

−

−

−−
− +

−

−−
= − + − +

−

 (21) 

The smooth pasting conditions associated with (21) is represented by: 

 
( )
( )

( )N

1 1

ˆrX / D
ˆψ λ X

11
1 C 1

ˆ τ 1 eC 1 τˆB C e
ψ r θ λ

−−−
= =

−
. (22) 

Since the replacement option element 1 1
ˆψ λ X

11
ˆB C e  always takes on a non-negative value, 

then 1ψ  and 1λ  are both non-negative. This corroborates our earlier conjecture. Further, a 

positive change in the remaining cumulative depreciation charge produces an increase in 

the replacement option value because of the presence of the residual depreciation tax 

shield in the value matching condition. Using (22) to eliminate 11B  from (21) yields: 

 

( )
( )

( )

( ) ( )

N
1 01

1 1

ˆrX / Dλ Xψ N0
1 ˆψ λ X

1 C

rN
N0

C

ˆ D τ 1 eC 1 τ C eψ 1 ˆψ r θ rC e

D τ 1 eC 1 τ ˆK τX.
r θ r

−

−

−− ⎛ ⎞
− + −⎜ ⎟− ⎝ ⎠

−−
= − + −

−

 (23) 

The reduced forms of the value matching relationship and smooth pasting conditions, 

(23) and (22) respectively, and the characteristic equation (17) collectively constitute the 

valuation model for an active productive process embodying a replacement option when 

depreciation is measured according to the straight line method for a positive cumulative 

residual depreciation. Although the model is composed of three equations and contains 

the four unknowns Ĉ , X̂ , 1ψ , and 1λ , the model is sufficient because of the presence of 

the discriminatory boundary ( )2
ˆ ˆG C,X 0= . No closed-form analytical solution exists for 

this model and it is necessary to recourse to numerical methods to generate the solution. 

The model can be expressed in terms of T̂ , which denotes the time elapsed between 

successive replacements, by substituting C N
ˆ ˆX D TD= −  in (22) and (23). 
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For X̂ 0=  when the remaining cumulative depreciation is positive, the model has to be 

modified to accommodate the absence of the residual depreciation tax credit and that the 

installation of the replica confers a depreciation tax shield over its lifetime. At the 

replacement event the value matching relationship, which is determined from 

( ) ( )22 21 0 0
ˆF C F C ,X K= −  where 1λ 0=  and 11 2B B=  since X 0= ,  and is expressed as: 

 
( ) ( ) ( )

12 12

rN
N0ψ ψ

2 2 0
C C

ˆ D τ 1 eC 1 τ C 1 τˆB C B C K
r θ r θ r

−−− −
− = − + −

− −
, (24) 

with: 

 
2

C C1 1
12 2 22 2 2

C C C

2r 1
⎛ ⎞ ⎛ ⎞θ θ

ψ = − + − + ≥⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠
. 

The associated smooth pasting condition is expressed: 

 
( )
( )

12ψ
2

12 C

Ĉ 1 τˆB C
ψ r θ

−
=

−
, 

which demonstrates that 12ψ 0≥  for the replacement option element to be non-negative. 

Substituting the smooth pasting condition in (24) yields: 

 
( )
( )

( ) ( )12

12

rNψ
N00

12 ψ
12 C C

ˆ D τ 1 eC 1 τ C 1 τCψ 1 Kˆψ r θ r θ rC

−−− −⎛ ⎞
− + = + − +⎜ ⎟− −⎝ ⎠

. (25) 

Because the residual depreciation is depleted and X̂ 0= , (25) supplies a single solution 

value for Ĉ . This result differs from the solution proposed by Dobbs (2004) (12) by the 

inclusion of the term representing the present value of the depreciation tax credit. It is 

straightforward to demonstrate that the value matching relationships for this model when 

X̂ 0>  and X̂ 0= , (21) and (24) respectively, are identical for X̂ 0= . 

 

Finally, it is possible to demonstrate that stochastic model is general from which the 

deterministic replacement solution can be derived for a zero operating cost volatility; the 

proof is provided in Appendix C. 

 

5. Simulation Results for Straight Line Method 
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We examine the effect of parametric changes on the solution results through the 

application of sensitivity analysis in order to gain an insight into its behaviour. 

Specifically, the investigation first evaluates the behaviour of the coefficients 1ψ , 1λ  and 

the cost level Ĉ  signalling replacement due to changes in the prevailing remain 

cumulative depreciation charge X̂ . Then we compare the effect of alternative periodic 

depreciation rates on Ĉ  and contrast these with previous findings. Finally, we investigate 

the impact of volatility changes on the solution. The analysis is initially performed on the 

base case and then various parametric changes are introduced. The base case is specified 

in Table 2. 

 

Table 2 
 

0C  0X  K  N ND τ  r  Cθ  Cσ  
40 80 100 8 10 30% 20% 15% 20% 

 

As the previously explained method has indicated, the solution is derived from a pre-

specified value of the remaining cumulative depreciation charge X̂ . However, we 

express the behaviours in terms of the time spent since the previous re-investment T̂ . 

When the lifetime of the depreciation charge N  and the initial remaining depreciation 

charge 0X  are set, then X̂  determines T̂  through 
0

X̂T̂ N 1
X

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
. Expressing the various 

behaviours in terms of  T̂  rather than X̂  is preferable because it is more meaningful and 

enables the two regimes T̂ N≤  and T̂ N>  to be incorporated on a single graph. 

 

The profiles for  1ψ  and 1λ , which are exhibited in Figure 7, clearly reveal the asymmetry 

at the depletion event for the remaining cumulative depreciation charge, T̂ N= . When 

T̂ N≤ , both the profiles are declining functions of T̂ : 1λ  declines to the value zero and 

1ψ  to 1.2846  at T̂ N= , and they then remain at these respective values for T̂ N> . When 

the remaining cumulative depreciation charge is completely depleted, X̂  plays no further 

part in determining the optimal replacement policy. The asymmetry effect is also clearly 

visible at T̂ N=  in Figure 8, which exhibits the joint behaviour of the optimal values 
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signalling replacement for the operating cost level, Ĉ  and time T̂ . The profile relating Ĉ  

and T̂  indicates the line of indifference between continuance with the incumbent asset 

and its replacement. Whenever the prevailing operating cost level for a certain time since 

the previous re-investment lies beneath the profile, the optimal decision is to continue 

with the incumbent asset but whenever the prevailing operating cost lies above the profile 

for a certain time, then the optimal decision is replacement. For T̂ N> , the line of 

indifference between continuance and replacement is independent of T̂  since the 

remaining cumulative depreciation charge is completely depleted. In contrast, there exists 

a positive relationship between Ĉ  and T̂  when T̂ N≤ . The tolerance for replacing 

younger assets is less than for older assets and the degree of tolerance increases with 

asset age until it reaches a maximum at the depletion event for the remaining cumulative 

depreciation charge. Young machines that experience significantly high operating cost 

levels will be replaced.  

 

The effects of altering the depreciation lifetime for the asset are displayed in Figure 9, 

which exhibits  the various lines of indifference for N 20= , N 8= , N 4=  and N 0= . This 

figure also presents the lie of indifference for a zero depreciation amount, when 

0 NX D 0= = , which is the solution to the model formulated by Dobbs (2004) and 

represented by (25). When the depreciation lifetime tends to zero N 0→ , then the various 

quantities involving depreciation in (21) and (23) adopt the following values: 

N
N 0 N

ˆD rXlim 1 exp 0
r D→

⎧ ⎫⎛ ⎞⎛ ⎞τ −⎪ ⎪− →⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
, 

N 0
ˆlim X 0

→
τ →  

and by l’Hospital’s rule: 

 N 0
0N 0 N

D rX
lim 1 exp X

r D→

⎧ ⎫⎛ ⎞⎛ ⎞τ −⎪ ⎪− → τ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
. 

As N  decreases and the point of asymmetry shifts leftwards along the line of 

indifference, the horizontal component to its right the reflecting (23) declines in value 

while the slope of the component to its left reflecting (21) increases in value. As N  

approaches zero, the component to the left of the point of asymmetry becomes 
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increasingly more insignificant and the horizontal component dominates. In contrast, as 

N  becomes increasingly large, then: 

 N 0
N N

D rXlim 1 exp 0
r D→∞

⎧ ⎫⎛ ⎞⎛ ⎞τ −⎪ ⎪− →⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
 

(24) and (25) are identical so the horizontal component to the right of the point of 

asymmetry tends the solution value proposed by Dobbs (2004).  The advantages of the 

solution values yielded by Dobbs (2004) are its ease in calculation and the provision of 

an upper limit. However, the present formulation demonstrates that a more efficient upper 

limit is supplied by the horizontal component to the right of the point of asymmetry (24) 

and that the two solution methods share a similar degree of computational ease. 

 

We now examine the effect of volatility changes on the solution. When C 0σ = , the 

solutions for the base case to the deterministic model from (28), T̂ 5.6315=  and to the 

stochastic model from (17), (21) and (22), X̂ 23.6847=  and Ĉ 93.0940= , are identical in 

line with the analytical proof given in the Appendix C. It can be shown numerically that 

positive changes in the volatility produce negative changes in both 1ψ  and 1λ  but Ĉ  and 

( )ˆˆ ˆF F C, X=  are both increasing functions of σ . The profiles for Ĉ  and F̂  are exhibited in 

Figure 10 for X̂ 23.6847= ; in evaluating F̂  we ignore the revenue term, which explains 

its negative value. The behaviour of these profiles agree with the findings of previous 

work on real options analysis and replacement models. 

 

6. Comparison of Declining Balance and Straight Line Methods 

 

The simulation results for the replacement real option model under declining balance and 

straight line depreciation schedules presented in sections 3 and 5 respectively offer no 

guidance on the comparative merits of the two alternative schedules. The aim of this 

section is to compare the replacement policies for the two schedules under reasonably 

similar conditions in order to identify the circumstances favouring one schedule relative 

to the other and to discern whether either of the two alternatives can be classified as ideal. 

Creating similar conditions underpinning the simulation exercise first requires setting the 
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variables common to both depreciation schedule to be identical. Secondly, we stipulate 

that the implied expected lifetime for the incumbent asset to be set to be equal for the two 

depreciation schedules. These two requirements imply that 0 DD θ K=  for the declining 

balance method and CD K=  for the straight line method, with D1/θ N / 2= .  

 

Table 3 
Base Case Data for Comparing the Effects  

of the Two Depreciation Schedules 
 

Common Data   
Replacement investment cost K  100 
Initial operating cost for a replica 0C  10 
Risk neutral operating cost drift rate Cθ  4% 
Operating cost volatility Cσ  25% 
Risk-free interest rate r  7% 
Relevant corporate tax rate τ  30% 
Declining Balance Method  
Initial depreciation charge 0D  10 
Depreciation declining balance rate Dθ  10% 
Straight Line Method   
Cumulative depreciation at replacement 0X 100 
Length of depreciation duration N  20 

 

In the presence of operating cost uncertainty, the comparison of the effects of the two 

depreciation schedules on the replacement policy is simulated using the data presented in 

Table 3. The data values for the common factors across the alternative depreciation 

schedules are set to be identical. The remaining parameters, which are distinctive due to 

the depreciation specification, are compelled to be comparable. The discriminatory 

boundaries for the replacement model under the two depreciation schedules against the 

age of the incumbent asset are presented in Figure 11.  

 

The preferred depreciation schedule for the stochastic replacement model ought to 

universally encourage the accelerated replacement of the incumbent asset relative to its 

contender so that the productive process always experiences an incumbent asset that 

suffers the less input decay. This criterion implies that the preferred depreciation 
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schedule ought to furnish the lower operating cost trigger level for all asset ages.  Figure 

11 reveals that there is no definitive winner. Although the declining balance schedule is 

preferred for newly installed assets, its position changes with asset age. From 

approximately 2 – 10 years, which is when the incumbent attains its expected life 

according to the depreciation schedules, the straight line schedule furnishes a lower 

operating cost trigger level and so represents the preferred method. The depreciation tax 

allowance under the declining balance schedule continues to decline with asset age. Over 

the critical range, the depreciation tax allowance for the straight line schedule becomes 

relatively more pronounced as the asset ages, but its residual depreciation tax allowance 

declines. The magnitude of the preference for the straight line method over this range is 

not significantly large with a proportional change not exceeding 1%. When the 

incumbent reaches its expected life according to the depreciation schedules, the preferred 

method of depreciation reverts to declining balance. From this age onwards, the residual 

depreciation tax allowance under the declining balance method becomes relatively more 

pronounced and this causes comparatively accelerated replacement owing to effects on 

the net replacement investment cost. Although there exists no universally ideal 

depreciation method, the declining balance schedule is to be preferred since the 

magnitude of the preference when it is second choice is only quite small. 

 

7. Conclusion 

 

In this paper, we analyse the replacement model for a productive asset that is subject to 

input decay, depreciation tax allowances and a fixed investment cost. Previous real option 

models on the stochastic replacement phenomenon have concentrated solely on single 

factors representations. Although the model proposed by Mauer & Ott (1995) involves 

three variables, these are condensed to a single variable by forcing depreciation and 

salvage value to be functions of the stochastic operating cost. Real option models 

specified for different contexts and involving more than a single factor either invoke the 

property of homogeneity of degree one where it is logically valid in order to reduce 

model dimensionality to a tractable level or resort to a purely numerical solution method. 

The property of homogeneity of degree one does not hold for the formulation under 



28 

current study. Instead, we use an analytical approach to determining the levels triggering 

replacement for the two factors by specifying the form of the valuation function and 

deriving the trigger levels from the economic boundary conditions. 

 

The quasi-analytical approach to determining the trigger levels has several comparative 

advantages. We demonstrate that from the result for the general replacement model, we 

can derive the special cases of a zero depreciation variable and for a zero operating cost 

volatility. These derived results are shown to be identical to the single factor stochastic 

replacement model under risk neutrality as proposed by Dobbs (2004) and the 

deterministic model under the dynamic programming formulation. Further, it is possible 

in principle to determine key indicators such as vega. The numerical results corroborate 

the findings of similar past works by establishing that both the operating cost trigger level 

and the valuation function increase for positive changes in the underlying volatility.  

 

By analysing the replacement model under alternative depreciation schedules, it is 

possible to discern the preferred form of schedule that comparatively accelerates the 

replacement event. Although there exists no definitive victor, the schedule based on the 

declining balance method is preferred for most asset ages and when it is second choice, 

the difference in the operating cost trigger levels for the two methods is relatively slight.  

By permitting the depreciation schedule to adopt one of two forms, a time dependent 

variable is included in the formulation and the resulting valuation function depends on 

two distinct factors. This two factor model is investigated through the quasi-analytical 

approach which yields a set of simultaneous equations from which the trigger levels can 

be generated. This approach has the potential that it can be extended to analysing multi-

factor real option models that involve a time dependent variable. This means that finite-

lived assets with embedded options, such as those whose productive life is constrained by 

external obligations and natural resources, can now in principle be evaluated using this 

approach. 

 

Appendix A: Deterministic Replacement Model  
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In this appendix, we examine the replacement models in a deterministic world where the 

depreciation charge is measured by (i) the declining balance and (ii) the straight line 

method. The notation used here employs the subscript indexed by the time variable t  

since the key variables are time dependent and the optimal solution is expressed in time 

units. 

 

(i) Declining Balance Depreciation Charge 

 

The present value TV  for an asset with a lifetime T  measured in years is the discounted 

future after tax net cash flows at the annualised continuous risk-adjusted rate of µ : 

 ( ) ( ){ }C D

T
α t α t µt

T 0 0 0
0

V 1 τ P 1 τ C e τD e e dt− −= − − − +∫ . (26) 

The asset is financially viable for some definite lifetime so Cα < µ . By adapting the 

result by Lutz & Lutz (1951), the optimal replacement time for the asset is found from 

maximising the value  of the infinite chain V∞with respect to T , where: 

 ( ) µT
T TV V V τRD K e−= + + −∞ ∞  

where  TRD  denotes the residual depreciation charge at replacement. Using the notation 

%  to represent a variable’s optimal value, the first order condition for V∞  to attain a 

maximum is: 

 ( ) TT
T

T TT T

dV dRDV RD K e 0
dT dT

−µ
∞

==

⎛ ⎞
= µ + τ − − τ =⎜ ⎟
⎝ ⎠

%

%
%%

. (27) 

The optimal solution depends on the specification for the residual depreciation charge. 

There are two alternatives. Under type A, the unused depreciation charge is granted as a 

single amount allowed against tax, then T
T

DRD =
θ

 and T*
T T*

dRD D
dT =

= − . (27) simplifies 

to: 

 
( ) ( )T* T*

T* 0C 0
T*

C C

1 C 1 Ce De 11 D K
−µ −µ− τ − τ⎛ ⎞ ⎛ ⎞α τ

+ − τ − = − +⎜ ⎟ ⎜ ⎟µ µ −α µ+ θ θ µ −α µ+θ⎝ ⎠⎝ ⎠
. (28) 
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Under type B, residual depreciation allowance against tax is the present value of the 

unused depreciation charges discounted at µ , then T
T

DRD =
µ + θ

 and T

T T*

DdRD
dT =

= −
µ + θ

. 

(27) simplifies to: 

 
( ) ( )T*

T* 0C 0

C C

1 C 1 Ce D1 K
−µ− τ − τ⎛ ⎞α τ

+ = − +⎜ ⎟µ µ −α µ−α µ+ θ⎝ ⎠
. (29) 

The optimal replacement time increases from type A to B because of the enhanced tax 

credit on replacement.  

 

(ii) Straight Line Depreciation Charge 

 

Under the straight line method, the cumulative depreciation charge for capital allowance 

purposes, denoted by CD , is equally apportioned over the asset’s presumed lifetime of 

N . The periodic depreciation charge, ND , is given by N CD D / N=  if the time point of 

interest is not greater than N  and ND 0=  if otherwise. 

 

When T N≤ , the present value for the asset becomes: 

 ( ) ( ){ }C

T
α t µt

T 0 0 N
0

V 1 τ P 1 τ C e τD e dt−= − − − +∫ . 

The first order optimality condition is given by (27). Then under type A, 

( )T NRD D N T= −  with T
N

dRD D
dT

= − , and the optimal solution simplifies to: 

 
( ) ( ) ( ) ( )

µT
0µTT N

N

1 τ C 1 τ CτDαe1 1 e τD N T K
µ µ α µ µ α

−
−⎛ ⎞− −

+ + − = − − +⎜ ⎟− −⎝ ⎠

%
%% %  (30) 

 

When T N> , the present value for the asset becomes: 

 ( ) ( ){ }0 0
0 0

1 1 α −µ −µ= − τ − − τ + τ∫ ∫
T N

t t t
T NV P C e e dt D e dt . 

The value of the infinite chain becomes: 

 ( ) −µ= + −∞ ∞
T

TV V V K e . 
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And the first order optimality condition becomes: 

 ( ) T*T

T T*

dV V K e
dT

−µ
∞

=

= µ −  

It is straightforward to derive the optimal solution: 

 
( ) ( ) ( )T

0NT N1 C 1 CDe1 1 e K
−µ

−µ⎛ ⎞− τ − ττα
+ + − = +⎜ ⎟µ µ −α µ µ −α⎝ ⎠

%
% . (31) 

The differences between (31) and (28) are the use of N  instead of T%  on the left hand side 

and the omission of the residual depreciation charge allowance against tax on the right 

hand side. 

 

Appendix B: Contingent Claims Analysis 

 

Under a contingent claims formulation, a portfolio is constructed of one long unit of the 

project F  and ϖ  short units of the operating cost C . When this portfolio is held over the 

short time interval ( )t, t dt+ , it accrues a capital appreciation and cash flow gain from 

its various constituents. These are shown in the following table: 

 F  Cϖ  

Capital appreciation dF  dCϖ  

Cash flow gain ( ) ( )( )0 1− − τ + τP C D dt Cdtϖφ  

The coefficient φ  represents the dividend yield for the traded security twinned with C .  

 

Operating costs and the depreciation charge follow a geometric Brownian process (1) and 

a geometric deterministic process (2) respectively. The overall gain for the portfolio over 

the short time interval ( )t, t dt+  is: 

 ( ) ( ) ( )( )1− ϖ + − − τ + τ − ϖφdF dC P C D C dt . 

By invoking Ito’s lemma and setting F
C
∂

ϖ =
∂

 to eliminate terms in dZ , the overall gain 

for the portfolio becomes: 
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 ( ) ( )
2

2 21
2 2 1

⎛ ⎞∂ ∂ ∂
σ − φ − α + − − τ + τ⎜ ⎟∂ ∂∂⎝ ⎠

D

F F F
C C D P C D dt

C DC
. 

Since this portfolio enjoys a risk-free gain, the return on the portfolio value depends on 

the risk-free rate r  so: 

 ( ) ( )
2

2 21
2 2 1

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− = σ − φ − α + − − τ + τ⎜ ⎟⎜ ⎟∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠
D

F F F F
r F C dt C C D P C D dt.

C C DC
 

Re-arranging, the risk neutral valuation relationship for the project F  becomes: 

 ( ) ( ) ( )
2

2 21
2 2 1 0∂ ∂ ∂
σ + − φ − α + − − τ + τ − =

∂ ∂∂ D

F F F
C r C D P C D rF .

C DC
 (32) 

When the deterministic process for the depreciation charge is arithmetic (14), the risk 

neutral valuation relationship becomes: 

 ( ) ( ) ( )
2

2 21
2 2 1 0∂ ∂ ∂
σ + − φ − α + − − τ + τ − =

∂ ∂∂ D

F F F
C r C P C D rF .

C DC
 (33) 

Except for the coefficient change, (32) and (33) are respectively identical to (3) and (16). 

 

Appendix C 

Zero variance 

The stochastic model is recast within a dynamic programming framework by setting 

D Dα = θ , C Cα = θ  and rµ = . When C 0σ = , (6) simplifies to C 1 D 1α η −α β = µ . Further, 

 
1 1

T̂0 0D C eˆ ˆD C

β η
−µ⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. 

By making these substitutions in (10), it is straightforward to demonstrate that the 

stochastic model simplifies to (28). 

 

Mauer and Ott 

 

Mauer & Ott (1995) treat depreciation as a function of cost and set the depreciation tax 

shield over t  to t dt+  equal to: 

 
z

0
0

CD
C

θ
−

⎛ ⎞
τ ⎜ ⎟

⎝ ⎠
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where 21
C C2z = α − σ . Ignoring the salvage price on disposal, their valuation relationship 

is represented by the partial differential equation: 

 ( ) ( )
2

2 2 MO MO1
C C 0 1 MO2 2

F FC C P 1 C 1 k C F 0
C C

δ∂ ∂
σ +α + − τ − − τ + τ −µ =

∂ ∂
, 

where 1 0 0k D C−δ=  and 
z
θ

δ = − . The solution to this partial differential equation is: 

 
( ) ( )

MO 0 0 1
MOD MOD

C

P 1 C 1 k CF A C
δ

η − τ − τ
= + − +

µ µ −α Λ
, (34) 

where: 

 
2

C C1 1
MO 2 22 2 2

C C C

2⎛ ⎞ ⎛ ⎞α α µ
η = − + − +⎜ ⎟ ⎜ ⎟σ σ σ⎝ ⎠ ⎝ ⎠

, 

 and: 

 ( )21
C C2 1Λ = µ−α δ− σ δ δ− . 

For the sake of comparison, we have ignored their reflecting barrier condition. Cancelling 

out the revenue term on either side of the equation, the value matching condition 

becomes: 

 

( )

( )

MO

MO

MOD 1 MOD
MOD MOD

C

0 1 0 1 MOD
MOD 0

C

ˆ ˆC 1 k CˆA C

ˆC 1 k C k CA C K,
δ δ

δ
η

η

− τ τ
− +

µ −α Λ

− τ τ τ
= − + + −

µ −α Λ θ

, (35) 

where MODĈ  represents the optimal cost trigger level under their formulation. Using the 

smooth pasting condition: 

 
( ) 1

MO

1
1 1 MOD 1 MOD

MO MOD MOD
C

ˆ ˆ1 k C k CˆA C
δ−δ−

η − − τ δ τ δ τ
η − + =

µ −α Λ θ
.  

(35) simplifies to: 

 

( )
( )

( )
( )

MO

MO

0 MOD1 0 0
MO

C MO C MOD

1 MOD 0
MO

MO MOD

ˆˆC 1 C 1k C CK 1
Ĉ

ˆk C C 1 1 ,
Ĉ

η
δ

η
δ

⎛ ⎞⎛ ⎞− τ − ττ ⎜ ⎟− + = η − + ⎜ ⎟⎜ ⎟⎜ ⎟η µ −α Λ η µ −α ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞τ ⎛ ⎞⎜ ⎟+ η − δ + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟η θ Λ⎝ ⎠⎝ ⎠⎝ ⎠

 (36) 
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from which the optimal cost trigger level can be implicitly evaluated. 

 

Now, we focus on salvage price in the formulation of Mauer & Ott (1995) and ignore the 

depreciation charge. The authors assume that salvage price is an inverse function of the 

cost: 2kS
C

= , where 2k  is an exogenously specified constant. The value matching 

condition becomes: 

 
( ) ( ) ( )

MO MOMOS 0 2
MOS MOSMOS 0

C C MOS

Ĉ 1 C 1 k 1ˆA C A C K
Ĉ

η η− τ − τ − τ
− = − + −

µ −α µ −α
, (37) 

where MOSĈ  denotes the cost trigger level. Using the smooth pasting condition: 

 
( ) ( )

MO 1 2
MOSMO MOS 2

C MOS

1 k 1ˆA C
Ĉ

η − − τ − τ
η − = −

µ −α
 

(37) simplifies to: 

 

( )
( )

( )

( )
( )

MO MO

MOS 20 0
MO MO

MO C MOS MO MOS MOS

0

C

Ĉ 1 k 1C C1 1ˆ ˆ ˆC C C

C 1
K,

η η⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− τ − τ⎜ ⎟ ⎜ ⎟η − + + η + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟η µ −α η⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
− τ

= +
η µ −α

 (38) 

 

 

( )
( )

( )

( )
( )

MO MO

MOS 20 0
MO MO

MO C MOS MO MOS MOS

0

C

Ĉ 1 k 1C C1 1ˆ ˆ ˆC C C

C 1
K,

η η⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− τ − τ⎜ ⎟ ⎜ ⎟η − + + η + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟η µ −α η⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
− τ

= +
η µ −α

 

from which the optimal cost trigger level can be implicitly evaluated. 
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Figure 1: Variations between the Operating Cost and Depreciation Trigger Levels  
 

 
This figure is based on calculations using the following information: 

0C  0D  K  Cθ  Dθ  r  Cσ  τ  
10 10 100 4% 10% 7% 25% 30% 

The operating cost trigger levels for the Dobbs (2004) model and the Mauer & Ott (1995) model are 
determined from Error! Reference source not found. and (36) respectively; the operating cost trigger 
level for both these formulations is independent of the depreciation trigger level. The profile of the 
operating cost trigger and the depreciation trigger levels for the current formulation is determined from 
Error! Reference source not found. and Error! Reference source not found. for the range of D̂  from 
zero to 10. Typical pairs of trigger levels are presented in the following table: 

D̂  0.0 5.0 10.0 

Ĉ  32.92 31.04 29.54 
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Figure 2: Profile of the Parameters 1β  and 1η  for Variations in the Depreciation Trigger 
Level 
 

 
Typical values for the parameters 1β , 1η  and the depreciation trigger level D̂  are shown 
in the following table: 

D̂  1β  1η  
0.0 0.0000 1.363
5.0 0.0117 1.376
10.0 0.0249 1.389
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Figure 3: 
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Figure 7: 

 

 

 

Figure 8: 

 

 



39 

Figure 9 

 

 
 

Figure 10 
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Figure 11: Comparison of Operating Cost Trigger Level versus Asset Age for Depreciation 

Schedules based on Declining Balance and Straight Line Method 
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